The movement model, momo, allows estimation of habitat preferences and fine-scale movement rates using various types of tagging data. It supports flexible spatiotemporal modeling with options for Kalman filter or matrix exponential approaches, and includes tools for data preparation, model fitting, and visualization.
Usage
fit.momo(
dat,
conf = NULL,
par = NULL,
map = NULL,
run = TRUE,
lower = get.lower.bounds(par),
upper = get.upper.bounds(par),
rel.tol = 1e-10,
do.sdreport = TRUE,
do.report = TRUE,
use.expm = NULL,
use.rel.events = NULL,
verbose = TRUE,
...
)
Arguments
- dat
data frame with input data as produced by the function check.momo.data.
- conf
configuration list as produced by the function def.conf. If
NULL
(default), def.conf is used to generate the default configuration list based on the input data.- par
parameter list with initial values as produced by the function def.par. If
NULL
(default), def.par is used to generate the default parameter list based on the input data and configuration list.- map
list with parameter mapping as produced by the function def.map. If
NULL
(default), def.map is used to generate the default mapping list based on the input data and configuration and parameter lists.- run
logical; If
FALSE
, the AD object is returned with the optimization. Default:FALSE
.- lower
by default, get.lower.bounds is used.
- upper
by default, get.upper.bounds is used.
- rel.tol
option passed to stats::nlminb sets the convergence criteria. Default:
1e-10
.- do.sdreport
logical; If
FALSE
, RTMB::sdreport is not run and no parameter uncertainties are returned. Default:TRUE
.- do.report
logical; If
FALSE
,obj$report()
is not run and RTMB variables might not be reported. Default:TRUE
.- use.expm
logical; allows to overwrite setting in configuration list (
conf$use.expm
). IfNULL
, setting from configuration list is used. Default:NULL
.- use.rel.events
logical; allows to overwrite setting in configuration list (
conf$use.rel.events
). IfNULL
, setting from configuration list is used. Default:NULL
.- verbose
if
TRUE
, print information to console. Default:TRUE
.- ...
extra arguments to RTMB::MakeADFun.
Examples
data(skjepo)
fit <- fit.momo(skjepo)
#> Building the model, that can take a few minutes.
#> Model built (1.2min). Minimizing neg. loglik.
#> 0: 2024137.4: 0.00000 0.00000 -4.60517 -4.60517
#> 1: 822806.96: -0.00442984 0.00317523 -3.72887 -4.12343
#> 2: 429339.57: -0.0143688 0.0103040 -3.46755 -3.15826
#> 3: 214568.29: -0.414157 0.297082 -2.59723 -3.13659
#> 4: 100599.53: -0.417775 0.299686 -2.14436 -2.24503
#> 5: 45369.701: -0.419581 0.300984 -1.14453 -2.26330
#> 6: 22178.448: -0.430474 0.308792 -0.673123 -1.38149
#> 7: 10381.920: -0.429132 0.307830 0.326756 -1.36604
#> 8: 7703.8075: -0.390426 0.280031 0.687032 -0.434410
#> 9: 5160.7658: -0.400396 0.287180 1.67321 -0.599652
#> 10: 4211.5318: -0.383993 0.275400 2.44868 -1.23071
#> 11: 4115.4272: -1.09732 0.786486 2.53610 -1.70221
#> 12: 4074.3916: -1.10233 0.790075 2.81142 -1.72440
#> 13: 4065.1856: -1.31075 0.939500 2.76596 -1.81660
#> 14: 4056.6811: -1.50508 1.07884 2.82306 -1.94264
#> 15: 4008.7287: -7.10373 5.09377 2.81722 -2.24258
#> 16: 3888.0840: -28.7389 20.6409 2.74378 -2.92450
#> 17: 3797.7523: -61.7620 44.4425 2.70626 -3.92068
#> 18: 3788.9090: -73.9539 53.2874 2.72004 -4.31690
#> 19: 3788.5840: -76.4753 55.1851 2.72451 -4.40093
#> 20: 3788.5758: -76.7968 55.4968 2.72488 -4.41174
#> 21: 3788.5708: -76.8688 55.6705 2.72514 -4.41479
#> 22: 3788.5471: -76.9244 56.4203 2.72574 -4.42017
#> 23: 3788.4882: -76.5814 58.2710 2.72681 -4.41943
#> 24: 3788.3478: -75.0263 62.5283 2.72820 -4.39483
#> 25: 3787.9751: -69.7242 73.5093 2.73032 -4.29317
#> 26: 3786.9841: -53.7325 102.254 2.73306 -3.96372
#> 27: 3783.9822: -6.78135 180.581 2.73516 -2.96278
#> 28: 3782.1413: 12.1685 211.810 2.72170 -2.55314
#> 29: 3779.7960: 27.3465 236.562 2.62458 -2.22205
#> 30: 3778.6891: 34.8400 248.696 2.63953 -2.05283
#> 31: 3778.6436: 43.1351 260.296 2.59814 -1.87791
#> 32: 3772.9536: 41.4752 235.934 2.57375 -1.92085
#> 33: 3772.1120: 41.3211 228.291 2.60112 -1.93531
#> 34: 3772.0141: 41.4141 228.973 2.60547 -1.95278
#> 35: 3771.4779: 45.7515 236.710 2.61740 -2.00955
#> 36: 3770.4104: 58.6265 256.986 2.63126 -2.08453
#> 37: 3767.2135: 107.441 330.688 2.65901 -2.26742
#> 38: 3760.1266: 242.336 530.117 2.69961 -2.66377
#> 39: 3746.3078: 608.548 1069.34 2.74263 -3.65099
#> 40: 3737.6921: 972.726 1609.93 2.70580 -4.52469
#> 41: 3737.3458: 1050.31 1727.02 2.69231 -4.69658
#> 42: 3737.3369: 1053.92 1732.83 2.69501 -4.70742
#> 43: 3737.3357: 1052.17 1730.60 2.69494 -4.70071
#> 44: 3737.3356: 1052.78 1731.53 2.69491 -4.70114
#> 45: 3737.3345: 1055.23 1735.27 2.69476 -4.69771
#> 46: 3737.3318: 1059.01 1741.04 2.69451 -4.67925
#> 47: 3737.3237: 1065.96 1751.67 2.69397 -4.60911
#> 48: 3737.2788: 1087.59 1784.82 2.69204 -4.27413
#> 49: 3734.9657: 1174.02 1917.48 2.68374 -2.78196
#> 50: 3732.5797: 1208.59 1970.55 2.67256 -2.18511
#> 51: 3728.9368: 1219.06 1986.62 2.57594 -1.99915
#> 52: 3728.7881: 1222.13 1991.33 2.58184 -1.93498
#> 53: 3728.7660: 1225.20 1996.03 2.54905 -1.88627
#> 54: 3728.6684: 1223.68 1993.67 2.56151 -1.89732
#> 55: 3728.6452: 1222.16 1991.31 2.56373 -1.91402
#> 56: 3728.1504: 1198.13 1953.29 2.55439 -1.90159
#> 57: 3727.1443: 1112.69 1820.90 2.56337 -1.90666
#> 58: 3726.9649: 1043.92 1717.10 2.55323 -1.88191
#> 59: 3726.9565: 1049.61 1725.43 2.55810 -1.89015
#> 60: 3726.9564: 1049.86 1725.86 2.55765 -1.88928
#> 61: 3726.9564: 1049.82 1725.79 2.55765 -1.88929
#> Minimization done (0.056min). Model converged. Estimating uncertainty.